
The Classical Model

Heteroskedasticity and

Correlations Across Errors



Heteroskedasticity

• Recall Assumption 5 of the CLRM: that all errors have the same variance. That 
is,

Var(εi) = σ2 for all i = 1,2,…,n
• Heteroskedasticityis a violation of this assumption.  It occurs if different 

observations’ errors have different variances. For example,
Var(εi) = σi

2

– In this case, we say the errors are heteroskedastic.
• Because heteroskedasticity violates an assumption of the CLRM, we know that • Because heteroskedasticity violates an assumption of the CLRM, we know that 

least squares is not BLUE when the errors are heteroskedastic.
• Heteroskedasticity occurs most often in cross-sectionaldata. These are data 

where observations are all for the same time period (e.g., a particular month, 
day, or year) but are from different entities (e.g., people, firms, provinces, 
countries, etc.)



Pure Heteroskedasticity

• There are two basic types of heteroskedasticity (pure & impure)
• Pure Heteroskedasticityarises if the model is correctly specified, but the errors are 

heteroskedastic, e.g., the DGP is:
Yi = β0 + β1X1i + εi

where Var(εi) = σi
2

• There are many ways to specify the heteroskedastic variance σi
2.

• A very simple specification is discrete heteroskedasticity, where the errors are drawn 
from one of two distributions, a “wide” distribution (with Large variance σL

2) or a 
“narrow” distribution (with Small variance σ 2) … draw a picture.

L
“narrow” distribution (with Small variance σS

2) … draw a picture.
• A common specification is to assume that the error variance is proportional to a the 

square of variable Z (that may or may not be one of the independent variables).  In this 
case,

• Var(εi) = σi
2 = σ2Zi

2

• and each observation’s error is drawn from its own distribution with mean zero and 
variance σ2Zi

2. (draw some pictures)
– An example: suppose we’re modeling household expenditures on leisure activities 

(movies, skiing, vacations, etc.). At low levels of household income, there will be less 
household-to-household variation in leisure spending (in $ terms) than at high levels of 
household income. That is, the error variance will be proportional to household income 
(Z). This is because poor people have less room in their budget for such variance.  



Inefficiency

• Why is OLS inefficient when we have pure 
heteroskedasticity?

• It is because there is another linear estimator 
that uses the data better, and can deliver a lower-
variance estimated coefficientvariance estimated coefficient

• Eg, what if some observations had zero-variance 
on their errors, but others had positive variance

– A linear estimator that delivers a lower-variance 
coefficient is to run OLS on only those observations 
with zero-variance.  Trash all the rest of the data



Impure Heteroskedasticity

• impure heteroskedasticity can arise if the model is mis-specified(e.g., due 
to an omitted variable) and the specification error induces 
heteroskedasticity.  For example, suppose the DGP is

Yi = β0 + β1X1i + β2X2i  + εi
but we estimate Yi = β0 + β1X1i + εi*

where ε* i = β2X2i  + εi
and where ε is a classical error term.and where εi is a classical error term.

• Then if X2i itself has a heteroskedastic component (e.g., the value of X2i
comes from either a “wide” or “narrow” distribution), then omitting it from 
the model makes the mis-specified error term ε* i behave 
heteroskedastically.

• Of course the solution here is simple: don’t omit X2 from the model!



Consequences of Heteroskedasticity

• We know that heteroskedasticity violates Assumption 5 of the 
CLRM, and hence OLS is not BLUE. What more can we say?

OLS estimates remain unbiased
We only need Assumptions 1-3 to show that the OLS estimator is unbiased, hence a 
violation of Assumption 5 has no effect on this property

Variance of the OLS estimator is inflated

Consider the case when the variance of the error rises with X:  the 
variance of the estimated slope coefficient is bigger (draw picture).

Standard formulae for standard errors of OLS estimates are wrong.
They don’t take account of the extra sampling variation (#2 above)



OLS Variance is Wrong
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Testing for Heteroskedasticity

• There are many formal tests available
• In addition to formal tests always look at residual plots!!
• Look for specification errors too, since apparent heteroskedasticity may 

just be due to an omitted variable, for instance.
• Of the many formal tests available, the most useful is the White Test. It 

is quite general, and designed to test for heteroskedasticity of an is quite general, and designed to test for heteroskedasticity of an 
unknown form (e.g., when we don’t know that the error variance is 
proportional to some Z)

• The White test is quite common, and you can do it EViews with a 
couple of clicks (we’ll see this in a moment).

• The next slide discusses how the test works …



Three Steps of the White test

1. Estimate the regression model of interest (call this equation 1) & collect 
the residuals, ei.
Suppose equation 1 is: Yi = β0 + β1X1i + β2X2i + β3X3i + εi

2. Square the residuals. Regress ei
2 on all the independent variables from 

equation 1, their squares, and cross products (call this equation 2).
So our equation 2 is:

ei
2 = α0 + α1X1i + α2X2i + α3X3i + α4X1i

2 + α5X2i
2 + α6X3i

2

+ α X X +  α X X + α X X + u
i 0 1 1i 2 2i 3 3i 4 1i 5 2i 6 3i

+ α7X1iX2i +  α8X1iX3i + α9X2iX3i + ui
3. Test the overall significance of equation 2.

The test statistic is nR2, where n is the sample size and R2 is the proportion of 
variation explained in equation 2.  Under the null of no heteroskedasticity, this 
test statistic has a Chi-square(k*) distribution asymptotically, where k* is the 
number of slope coefficients in equation 2.  

Critical values of the Chi-square distribution are in the text (table B-8).
if the test statistic exceeds the critical value, reject the null.

In Eviews, you first run the regression, then, under View, select “Residual 
Diagnostics”, select “Heteroskedasticity Tests”, select “White”



What to do if errors are heteroskedastic …

• If you find evidence of heteroskedasticity – whether through a formal 
test by looking at residual plots – you have several options

1. Use OLS to estimate the regression and “fix” the standard errors
A. We know OLS is unbiased, it’s just that the usual formula for the standard 

errors is wrong (and hence tests can be misleading)
B. We can get consistent estimates of the standard errors (as the sample size 

goes to infinity, a consistent estimator gets arbitrarily close to the true goes to infinity, a consistent estimator gets arbitrarily close to the true 
value in a probabilistic sense) called White’s Heteroskedasticity-
Consistentstandard errors

C. When specifying the regression in EViews, click the OPTIONS tab, check 
the “Coefficient Covariance Matrix” box, and the “White” button

D. Most of the time, this approach is sufficient
2. Try Weighted Least Squares (WLS) – if you know the source of the 

heteroskedasticity and want a more efficient estimator
3. Try re-defining the variables – again, if you think you understand the 

source of the problem (taking log of dependent variable often helps)



The Park Test

• If we suspect we know the source of the heteroskedasticity, e.g., if we 
suspect 

Var(εi) = σi
2 = σ2Zi

2

then we can do better.
• There are three steps:
1. Estimate the equation of interest:

Yi = β0 + β1X1i + β2X2i + εiYi = β0 + β1X1i + β2X2i + εi
and collect the residuals ei

2. Estimate the auxiliary regression:
ln(ei

2) = α0 + α1lnZi + ui
where the error term ui satisfies the assumptions of the CLRM. (why logs?).

3. Test the statistical significance of lnZi in the auxiliary regression with a t-test, 
i.e., test the null

H0: α1 = 0 , H1: α1 ≠ 0 
• Problem with this approach: we need to know Z!



Weighted Least Squares

• We know that OLS is not BLUE when errors are heteroskedastic
• Suppose we want to estimate the regression:

Yi = β0 + β1X1i + β2X2i + εi
and we know (or suspect) that 

Var(εi) = σi
2 = σ2Zi

2.

• We could rewrite the model as:
Y = β + β X + β X + Zu

• We could rewrite the model as:
Yi = β0 + β1X1i + β2X2i + Ziui

where Var(ui) = σ2.
• The BLUE of this model is called Weighted Least Squares (WLS).  It is just 

least squares on the transformed model:
Yi/Zi = β0/Zi + β1X1i/Zi + β2X2i/Zi + ui

where we divide everything through by Zi.

• Notice that the transformed model has a homoskedastic error, and hence OLS is 
BLUE in the transformed model.

• You can do all this in EViews using the “Weight” option (but note EViews
defines the weight as 1/Zi)



Redefining Variables

• Sometimes the best alternative is to go back to the 
drawing board – and redefine the variables in a way 
that is consistent with economic theory & common 
sense and that makes the errors homoskedastic.

• Using a logarithmic dependent variable may help• Using a logarithmic dependent variable may help
– homoskedasticity in the semi-log model means the error 

variance is a constant proportion of the dependent 
variable.

• Other transformations may help, too, e.g., deflating 
by a scale variable



Redefining Variables – An Example

• Another example: suppose we’re estimating the regression:

EXPi = β0 + β1GDPi + β2POPi + β3CIGi+ εi

where EXPi is medical expenditure in province i
GDPi is GDP in province i
POPi is population in province i
CIG is the number of cigarettes sold in province i
POPi is population in province i
CIGi is the number of cigarettes sold in province i

Then “large” provinces (Quebec and Ontario) will have much larger 
error variance than “small” provinces (e.g., PEI), just because the scale 
of their medical expenditures (and everything else) will be so much 
bigger.  We could take logs, but even better, estimate:

EXPi/POPi = α0 + α1GDPi/POPi + α3CIGi/POPi+ ui
which puts expenditures, GDP, and cigarette sales in “per-capita” terms.  
This way, each province contributes about the same amount of 
information, and should stabilize the error variances too.



Serial Correlation

• Serial correlation occurs when one observation’s error term (εi) is 
correlated with  another observation’s error term (εj): Corr(εi, εj) ≠ 0

• We say the errors are serially correlated
• This usually happens because there is an important relationship 

(economic or otherwise) between the observations. Examples:
– Time series data(when observations are measurements of the same 

variables at different points in time)variables at different points in time)
– Cluster sampling (when observations are measurements of the same 

variables on related subjects, e.g., more than one member of the same 
family, more than one firm operating in the same market, etc.)

• Example: Suppose you are modeling calorie consumption with data on a 
random sample of families, one observation for each family member. 
Because families eat together, random shocks to calorie consumption (i.e., 
errors) are likely to be correlated within families.

• Serial correlation violates Assumption 4 of the CLRM. So we know 
that least squares is not BLUE when errors are serially correlated.



Pure Serial Correlation

• There are two basic types of serial correlation (pure & impure)
• Pure Serial Correlation arises if the model is correctly specified, but 

the errors are serially correlated, e.g., the DGP is:
Yt = β0 + β1X1t + εt

where εt = ρεt-1 + ut
and ut is a “classical” error term (i.e., it satisfies the assumptions of the 
CLRM)

t
CLRM)

• Note: we used the subscript t (instead of i) to denote the observation 
number. This is standard for models of time series data (t refers to a 
time period), which is where serial correlation arises most frequently.

• Note also: this kind of serial correlation is called first-order 
autocorrelation (or first-order autoregression, or AR(1) for short), 
and ρ is called the autocorrelation coefficient
– this kind of serial correlation is very common in time-series settings



Impure Serial Correlation

• Impure serial correlation arises if the model is mis-specified(e.g., due to an omitted 
variable) and the specification error induces serial correlation.  For example, suppose the 
DGP is

Yt = β0 + β1X1t + β2X2t  + εt
but we estimateYt = β0 + β1X1t + εt*
where ε* t = β2X2t  + εt
and suppose X2t = γX2t-1 + ut
and where εt and ut are classical error terms. t t

• Because of the specification error (omitting X2 from the model), the error term in the 
mis-specified model is:

ε* t = β2X2t  + εt
= β2(γX2t-1 + ut) + εt
= γε* t-1+ β2 ut + εt - γεt-1 

and is therefore correlated with the error term of observation t-1 (that is, ε* t-1)

• This omitted variables problem does not cause bias because the omitted variable is not 
correlated with the included regressor.  

• But, it does cause inefficiency because the omitted variable is correlated with itself over 
time.



Some examples

• We saw the example of first-order autocorrelation already: εt = ρεt-1 + ut

• this requires -1 < ρ < 1 (why? what if ρ = 0?)
• ρ < 0 is an example of negative serial correlation, where εt and εt-1 tend to have 

opposite signs. This case is difficult to interpret & pretty rare in economic data. (Draw 
some pictures)

• ρ > 0 is an example of positive serial correlation. In this case, εt andεt-1 tend to have 
the same sign.  This is very common in economic data (draw some pictures).

– Happens frequently in time series data if macroeconomic “shocks” take time to work their way – Happens frequently in time series data if macroeconomic “shocks” take time to work their way 
through the economy

– Example: modeling the price of oranges. Oranges can only be grown in warm climates. They 
are transported by truck before being sold to consumers. Thus their price is influenced by the 
price of gasoline (and hence of oil).  An unexpected shock to the supply of oil (say, due to the 
invasion of an oil producing country …) leads to an increase in the price of oil that may last 
several years, and shows up as a series of positive “shocks” to the price of oranges.

• We can also have higher order autocorrelation, e.g., 
εt = ρ1εt-1 + ρ2εt-2 + ut    (second-order autocorrelation)

• Autocorrelation need not be between adjacent periods, e.g., with quarterly data we might 
have 

εt = ρεt-4 + ut   (seasonal autocorrelation, where today’s error is correlated with 
the error 1 year ago, say due to seasonal demand)



Consequences of Serial Correlation

• We know that serial correlation violates Assumption 4 of the CLRM, and hence 
OLS is not BLUE. What more can we say?

1. OLS estimates remain unbiased
We only need Assumptions 1-3 to show that the OLS estimator is unbiased, hence 

a violation of Assumption 4 has no effect on this property
2. The OLS estimator is no longer the best (minimum variance) linear unbiased 

estimator
Serial correlation implies that errors are partly predictable. For example, with Serial correlation implies that errors are partly predictable. For example, with 

positive serial correlation, then a positive error today implies tomorrow’s 
error is likely to be positive also. The OLS estimator ignores this 
information; more efficient estimators are available that do not.

3. Standard formulae for standard errors of OLS estimates are wrong.
Standard formulae for OLS standard errors assume that errors are not serially 

correlated – have a look at how we derived these in lecture 12 (we needed to 
use assumption 4 of the CLRM). Since our t-test statistic depends on these 
standard errors, we should be careful about doing t-tests in the presence of 
serial correlation.



Testing for Serial Correlation

• There are a number of formal tests available
• In addition to formal tests always look at residual plots!!
• The most common test is the Durbin-Watson (DW) d Test
• This is a test for first-order autocorrelation only
• Some caveats: the model needs to have an intercept term, and can’t have a 

lagged dependent variable (i.e., Yt-1 as one of the independent variables)
• If we write the error term as• If we write the error term as

εt = ρεt-1 + ut
DW tests the null hypothesis

H0 : ρ ≤ 0  (no positive autocorrelation)
or H0 : ρ = 0  (no autocorrelation)
against the appropriate alternative.

• This test is so common that almost every software package automatically 
calculates the value of the d statistic whenever you estimate a regression 
– but they almost never report p-values … for reasons we’ll see in a moment



The Durbin-Watson d test

• The test statistic is based on the least squares residuals e1, e2, …, eT (where T is the 
sample size).  The test statistic is:

• Consider the extremes:
– if ρ = 1, then we expect et = et-1. When this is true, d ≈ 0.
– if ρ = -1, then we expect et = - et-1 and et - et-1 = -2et-1. When this is true, d ≈ 4.
– if ρ = 0, then we expect d ≈ 2.
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– if ρ = 0, then we expect d ≈ 2.
• Hence values of the test statistic “far” from 2 indicate that serial correlation is likely 

present.
• Unfortunately, the distribution theory for d is a little funny – for some values of d, the 

test is inconclusive
– For a given significance level, there are two critical values: 0 < dL < dU  < 2
– For a one-sided test, H0 : ρ ≤ 0  ,  H1 : ρ > 0

• Reject H0 if d < dL
• Do not reject H0 if d > dU
• Test is inconclusive if dL ≤ d ≤ dU

– (see the text for decision rules for a two-sided test)
• Do an example … and show how to plot the residuals



What to do if errors are serially correlated …

• If you find evidence of serial correlation – whether through a formal 
test or just by looking at residual plots – you have several options 
available to you

1. Use OLS to estimate the regression and “fix” the standard errors
A. We know OLS is unbiased, it’s just that the usual formula for the 

standard errors is wrong (and hence tests can be misleading)
B. We can get consistent estimates of the standard errors (as the sample B. We can get consistent estimates of the standard errors (as the sample 

size goes to infinity, a consistent estimator gets arbitrarily close to the 
true value in a probabilistic sense) called Newey-Weststandard errors

C. When specifying the regression in EViews, click the OPTIONS tab, 
check the “coefficient covariance matrix” box, and the “HAC Newey-
West” button

D. Most of the time, this approach is sufficient
2. Try Generalized Least Squares (GLS) – if you want a more efficient 

estimator



Generalized Least Squares

• We know that OLS is not BLUE when errors are serially correlated
• Rather, the BLUE is a generalization of OLS called Generalized Least Squares 

(GLS)
• Suppose we want to estimate the regression:

Yt = β0 + β1X1t + εt
but we suspect that εt is serially correlated. In particular, suppose we think (say, 
based on a DW test) that

ε = ρε + uεt = ρεt-1 + ut

• Then we could write the model as:
Yt = β0 + β1X1t + ρεt-1 + ut

• GLS is a method of estimating β0 ,β1 and ρ (and it’s the BLUE of β0  β1)
• There are several different ways of calculating the GLS estimator (the text 

discusses two) -- the mechanics are beyond the scope of this course (we have 
computers for that!)

• The simplest: in EViews, just add AR(1) as an independent variable! (or AR(4) 
for the seasonal model we saw before, or AR(1) AR(2) for the second-order 
autoregressive model, etc.). 



Non-Spherical Errors

• If errors are uncorrelated across observations and have 

identical variances, we say they are spherical.

• If errors are correlated across observations or have variances 

that differ across observations, we say that they are non-

spherical.spherical.

• When you have nonspherical errors, OLS gives the wrong 

variances, but you can get correct ones:  White or HAC-

Newey-West (or clustered)

• When you have nonspherical errors, OLS is not efficient.  Its 

variance is not the smallest possible among linear estimators. 

But, WLS is efficient if you know the form of the 

heteroskedasticity, and GLS is efficient if you know the form of 

the correlation across observations.


