The Classical Model

Heteroskedasticity and

Correlations Across Errors



Heteroskedasticity

Recall Assumption 5 of the CLRM: that all errors have the samance. That
IS,
Var(g) =c?foralli=1,2,...n
Heteroskedasticityis a violation of this assumption. It occurs if different
observations’ errors have different variances. For example,
Val'(el) - Giz
— In this case, we say the errors heteroskedastic.

Because heteroskedasticity violates an assumption of the CLRkhawvethat
least squares is not BLUE when the errors are heteroskedastic.

Heteroskedasticity occurs most oftercmss-sectionabdata. These are data
where observations are all for the same time period (e.g.tieuear month,
day, or year) but are from different entities (e.g., peopiasii provinces,
countries, etc.)



Pure Heteroskedasticity

There are two basic types of heteroskedasticity (pure & impure)

Pure Heteroskedasticityarises if the model isorrectly specifiedbut the errors are
heteroskedastic, e.g., the DGP is:

Y = + X .+ e
where Varg) = o2 Fot Put &

There are many ways to specify the heteroskedastic vargnce

A very simple specification idiscrete heteroskedasticitywhere the errors are drawn
from one of two distributions, a “wide” distribution (with Large vadac, ?) or a
“narrow” distribution (with Small varianceg) ... draw a picture.

A common specification is to assume that the error variamrep®rtional to a the _
square of variabl (that may or may not be one of the independent variables). In this
case,

Val'(é‘,) = Gi2: GZZiZ

and each observation’s error is drawn from its own distribution widmmero and
variances?Z2. (draw some pictures

— An example: suppose we're modeling household expaesg on leisure activities
(movies, skiing, vacations, etc.). At low levelshafusehold income, there will be less
household-to-household variation in leisure spemdim $ terms) than at high levels of
household income. That is, the error variance valbroportional to household income
(2). This is because poor people have less roomein ludget for such variance.



Inefficiency

* Why is OLS inefficient when we have pure
heteroskedasticity?

e |tis because there is another linear estimator
that uses the data better, and can deliver a lower-
variance estimated coefficient

 Eg, what if some observations had zero-variance
on their errors, but others had positive variance
— A linear estimator that delivers a lower-variance

coefficient is to run OLS on only those observations
with zero-variance. Trash all the rest of the data




Impure Heteroskedasticity

Impure heteroskedasticitycan arise if the model mis-specifiede.g., due
to an omitted variable) and the specification emduces
heteroskedasticity. For example, suppose the BGP |

Yi = Pot biXy* BXy + g
but we estimate Y=ot Xyt &
where £i= PoXoi + &
and whereg; is a classical error ter
Then if X,;itself has a heteroskedastic component (e.g.,aheofX,,
comes from either a “wide” or “narrow” distributigrthen omitting it from
the model makes the mis-specified error teknbehave
heteroskedastically.

Of course the solution here is simple: don’t oxgifrom the model!



Consequences of Heteroskedasticity

We know that heteroskedasticity violates Assumpfiarf the
CLRM, and hence OLS is not BLUE. What more can ae’s

OLS estimates remain unbiased

We only need Assumptions 1-3 to show that the OdtBnator is unbiased, hence a
violation of Assumption 5 has no effect on thispgeady

Variance of the OLS estimator is inflated

Consider the case when the variance of the eses withX: the
variance of the estimated slope coefficient is bigglraw picture).

Standard formulae for standard errors of OLS es@mare wrong.
They don’t take account of the extra sampling \emma(#2 above)



OLS Variance is Wrong

Let Y=a+B X +¢&, and %( X- _>}q J =0 and let be heteroskedastic{(‘ﬁ)z] =0’

~ i;,(xi_i)fi
B=p+ T
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é(xi—i)z (Z(X Y)zjz KZ( ) H




Testing for Heteroskedasticity

There are many formal tests available
In addition to formal testalways look at residual plots!!

Look for specification errors too, since apparegtehoskedasticity may
just be due to an omitted variable, for instance.

Of the many formal tests available, the most ussftheWhite Testlt
IS quite general, and designed to test for hetexssticity of ar
unknown form (e.g., when we don’t know that theerariance is
proportional to som&)

The White test is quite common, and you can dd/ietws with a
couple of clicks (we’ll see this in a moment).

The next slide discusses how the test works ...



Three Steps of the White test

Estimate the regression model of interest (b@leéquation 1) & collect
the residualsg.

Suppose equation 1 1§:= Sy + f1Xg; + foXo + f3Xg + ¢

Square the residuals. Regressn all the independent variables from

equation 1, their squares, and cross productstfsalequation 2).

So our equatioQ 2 1s: X X .2 X2 .2

=—o~t o .+ .+ .+ <4+ o <4+ o .
+ 0‘7>](1i oy + Zaszklixj "'slagxgi 5+ ui5 i o

Test the overall significance of equation 2.

The test statistic iBR?, wheren is the sample size afr} is the proportion of
variation explained in equation 2. Under the null of no heteroskedaghesty,
test statistic has a Chi-squd¢ce(distribution asymptotically, wheié is the
number of slope coefficients in equation 2.

Critical values of the Chi-square distribution are in the teki€tB-38).
if the test statistic exceeds the critical value, rdjeetnull.

In Eviews, you first run the regression, then, under View, séRasidual
Diagnostics”, select “Heteroskedasticity Tests”, selechitd/



What to do if errors are heteroskedastic ...

. If you find evidence of heteroskedasticity — whett@ough a formal
test by looking at residual plots — you have sevepébns

1. Use OLS to estimate the regression and “fix"dtaadard errors

A. We know OLS is unbiased, it’s just that the usual formula fosthAedard
errors is wrong (and hence tests can be misleading)

B. We can getonsistentestimates of the standard errors (as the sample size
goes to infinity, a consistent estimator gets arbitrarily clogbe true
value in a probabilistic sense) calMthite’s Heteroskedasticity-
Consistentstandard errors

C. When specifying the regression in EViews, click the OPTICS aheck
the “Coefficient Covariance Matrix” box, and the “White” button

D. Most of the time, this approach is sufficient

2. Try Weighted Least Squares (WLS) — if you knowgbarce of the
heteroskedasticity and want a more efficient estbma

3. Try re-defining the variables — again, if you thyou understand the
source of the problem (taking log of dependentalde often helps)



The Park Test

If we suspect we know the source of the heteroskaily, e.qg., if we

suspect

Var(e;) = 02 = 62Z?
then we can do better.
There are three steps:

Estimate the equation of interest:

Y= pot piXgit poXyi t g
and collect the residuads
Estimate the auxiliary regression:

In(e?) = ay + o4InZ + u;

where the error term satisfies the assumptions of the CLRMh§ logs?.
Test the statistical significancelo¥; in the auxiliary regression with a t-test,
l.e., test the null
Problem with this approach: we need to krdw



Weighted Least Squares

We know that OLS is not BLUE when errors are heteroskedastic

Suppose we want to estimate the regression:
Yi = Pot biXyt foXy t g
and we know (or suspect) that
Var(e;) = 02 = 6°Z2.

We could rewrite the model ¢
Y= fo+ PrXe T PoXo + 4
where Varg) = o2
The BLUE of this model is called Weighted Least Squares (WLS3. just
least squares on the transformed model:
Y4 = L+ BiXoilZ + BoXolZ + U
where we divide everything through By

Notice that the transformed model has a homoskedastic error, anddiefce
BLUE in the transformed model.

You can do all this in EViews using the “Weight” option (but note EViews
defines the weight agZ)



Redefining Variables

e Sometimes the best alternative Is to go back to the
drawing board — and redefine the variables in a way
that is consistent with economic theory & common
sensend that makes the errors homoskedastic.

e Using a logarithmic dependent variable may

— homoskedasticity in the semi-log model means the error
variance iIs a constaptoportion of the dependent
variable.

e Other transformations may help, too, e.qg., deflating
by a scale variable



Redefining Variables — An Example

Another example: suppose we’'re estimating the s=goe:
EXP = S, + B,GDP, + 5,POP + ,CIG+ ¢,

where EXP is medical expenditure in province
GDP Is GDP In province
POF IS population in provinci
CIG; is the number of cigarettes sold in provii

Then “large” provmces (Quebec and Ontario) wi@anuch larger
error variance than “small” provinces (e.g., PiI¥t because the scale
of their medical expenditures (and everythlng elal)be so much
bigger. We could take logs, but even better, edem

EXP/POPR = a,+ a,GDP/POP + a,CIG/POP+ u,
which puts expendltures GDP and C|garette salépxer caplta 'terms.
This way, each province contributes about the sameunt of
Information, and should stabilize the error varestoo.



Serial Correlation

 Serial correlation occurs when one observation’s error teghig
correlated with another observation’s error tesjn Corr(s;, &) # 0

* We say the errors aeerially correlated

« This usually happens because there is an impag&tionship
(economic or otherwise) between the observatioxaniples:

— Time series data(when observations are measurements of the same
variables at different points in tin
— Cluster sampling (when observations are measurements of the same
variables on relatesubjectse.g., more than one member of the same
family, more than one firm operating in the same market, etc.)
« Example: Suppose you are modeling calorie consumption with data on a
random sample of families, one observation for each family member.

Because families eat together, random shocks to calorie consumjgtion (
errors) are likely to be correlated within families.

 Serial correlation violates Assumption 4 of the GILRSo we know
that least squares is not BLUE when errors aralbedorrelated.



Pure Serial Correlation

There are two basic types of serial correlatiomg@impure)

Pure Serial Correlation arises if the model isorrectly specifiedbut
the errors are serially correlated, e.g., the D&GP |

Yi=fot Xt &
where L &= pEg T U . .
andu; is a “classical” error term (l.e., It satisfies #gsumptions of the
CLRM)

Note: we used the subscrip{instead of) to denote the observation
number. This Is standard for models of time sedaa ( refers to a
time period), which is where serial correlatiorsas most frequently.

Note also:this kind of serial correlation is calléast-order
autocorrelation (or first-order autoregression, or AR(1) for short)
andp Is called the autocorrelation coefficient

— this kind of serial correlation is very common in time-seri¢snsgs



Impure Serial Correlation

Impure serial correlation arises if the model isiis-specifiede.g., due to an omitted
variable) and the specification error induces serial correlatton.example, suppose the

DGP is
, Yi = Pot BiXut BoXo + &

but we estimateY, = f, + S, Xy + &
where &= PoXo t
and suppose Xor= YXopg + Uy
and where, andu, are classical error terms.
Because of the specification error (omittddgfrom the model), the error term in the
mis-specified model is:

€= PoXy t &

= IBZSYXZt—l tu)t g
_ = Y€t Pl & - Ve .

and is therefore correlated with the error term of observatliqhat is,e", ;)

This omitted variables problem does not canias because the omitted variablenist
correlated with the included regressor.

tBut, it does causkefficiency because the omitted variable is correlated with itself over
ime.



Some examples

We saw the example of first-order autocorrelation alregdype, ; + U,
this requires -1 ¢ < 1 (why? what if p = 0?)
p < 0is an example afegative serial correlation whereg, ande, , tend to have

opposite signs. This case is difficult to interpret & pretty nareconomic datgDraw
some picturey

p > 0is an example gdositive serial correlation In this cases, ande, , tend to have
the same sign. This is very common in economic @ktawv some pictures).
— Happens frequently in time series data if macroenoa “shocks” take time to work their wi
through the economy
— Example: modeling the price of oranges. Orangeocénbe grown in warm climates. They
are transported by truck before being sold to comss. Thus their price is influenced by the
price of gasoline (and hence of oil). An unexpedatieock to the supply of oil (say, due to the
Invasion of an oil producing country ...) leads tamerease in the price of oil that may last
several years, and shows up as a series of posheeks” to the price of oranges.

We can also have higher order autocorrelation, e.g.,
& = P&y T potrp T Uy (Second-order autocorrelation)

ﬁutocorrelation need not be between adjacent periods, e.g., with tudatr we might
ave
& = pey,t U, (Seasonal autocorrelation, where today’s error is correlated with
the error 1 year ago, say due to seasonal demand)



Consequences of Serial Correlation

We know that serial correlation violates Assumption 4 of the CL&M,hence
OLS is not BLUE. What more can we say?

OLS estimates remain unbiased

We only need Assumptions 1-3 to show that the OLS estimator is uthpiesee
a violation of Assumption 4 has no effect on this property

The OLS estimator is no longer the best (minimum variance) lumdaased
estimator

Serial correlation implies that errors are partly predictdide example, witl
positive serial correlation, then a positive error today impiestrow’s
error is likely to be positive also. The OLS estimator igndmiss t
information; more efficient estimators are available that do not.

Standard formulae for standard errors of OLS estimates angwr

Standard formulae for OLS standard errors assume that errarstaerially
correlated — have a look at how we derived these in lecture 12 (@edchee
use assumption 4 of the CLRM). Since our t-test statistic depenitiese
standard errors, we should be careful about doing t-tests in the mresenc
serial correlation.



Testing for Serial Correlation

There are a number of formal tests available

In addition to formal testalways look at residual plots!!
The most common test is tBairbin-WatsonDW) d Test
This is a test for first-order autocorrelationly

Some caveats: the model needs to have an intercept term, arftboaret
lagged dependent variab{ee., Y, ; as one of the independent variables)

If we write the error term

& = Pyt U
DW tests the null hypothe3|s

Hy: p <0 (no positive autocorrelation)
or Hy: p = 0 (no autocorrelation)
against the appropriate alternatlve

This test is so common that almost every software package aicaligat
calculates the value of tlestatistic whenever you estimate a regression

— but they almost never report p-values ... for reasons we’ll seenomaent



The Durbin-Watson d test

The test statistic is based on the least squares resglugls..., & (whereT is the

sample size). The test statistic is: = >
DI CELE
Consider the extremes: Zthletz
— if p =1, then we expe& = e_,-Whemnthis is trua] = 0.
— if p=-1, then we exped& = - e_, ande, - e, = -2e_;. When this is truaj = 4.
— if p =0, then we exped = 2.

Hence %/alues of the test statistic “far” from 2 indicate seatal correlation is likely
present.

Unfortunately, the distribution theory fdris a little funny — for some values dfthe
test isinconclusive

— For a given significance level, there are two critical valQesd, < d, < 2
— Foraone-sidedtedt;: p<0 ,H;:p>0
* RejectH,if d<d,
Do notrejecH,if d>d,
« Testis inconclusive ifi, <d<d,
— (see the text for decision rules for a two-sided test)
Do an example ... and show how to plot the residuals




What to do if errors are serially correlated ...

« Ifyou find evidence of serial correlation — whetltierough a formal
test or just by looking at residual plots — you hageeral options
available to you

1. Use OLS to estimate the regression and “fix"dtandard errors

A. We know OLS is unbiased, it’s just that the usual formula for the
standard errors is wrong (and hence tests can be misleading)

B. We can geconsistentestimates of the standard errors (as the sa
size goes to infinity, a consistent estimator gets arbitralolye to the
true value in a probabilistic sense) caldelwey-Weststandard errors

C. When speufymg the regression in EViews, click the OPTIOMS t
check the “coefficient covariance matrix” box and the “HAC Newey-
West” button

D. Most of the time, this approach is sufficient

2. Try Generalized Least Squares (GLS) — If you veamtore efficient
estimator



Generalized Least Squares

We know that OLS is not BLUE when errors are serially caedla

Rather, the BLUE is a generalization of OLS called Genedlizast Squares
(GLS)
Suppose we want to estimate the regression:

Y= ot Xt &
but we suspect thatis senally corre[lated In particular, suppose we think (say,
based on a DW test) that

= Pérg T Uy

Then we could write the model as:

Yi= Pot PrXet peg T U,
GLS is a method of estimatintyy, #, andp (and it's the BLUE of3, $,)
There are several different ways of calculating the GL#astir (the text
discusses two) -- the mechanics are beyond the scope of this coarsave
computers for that!)
The simplest: in EViews, just add AR(1) as an independent vari@olaR(4)
for the seasonal model we saw before, or AR(1) AR(2) for thenslearder
autoregressive model, etc.).



Non-Spherical Errors

If errors are uncorrelated across observations and have
identical variances, we say they are spherical.

If errors are correlated across observations or have variances
that differ across observations, we say that they are non-
spherical.

When you have nonspherical errors, OLS gives the wrong
variances, but you can get correct ones: White or HAC-
Newey-West (or clustered)

When you have nonspherical errors, OLS is not efficient. Its
variance is not the smallest possible among linear estimators.
But, WLS is efficient if you know the form of the
heteroskedasticity, and GLS is efficient if you know the form of
the correlation across observations.



